|YryX with Open Texts

LINEAR ALGEBRA with Applications

Open Edition

Adapted for
Emory University
Math 221
Linear Algebra
Sections 1 \& 2
Lectured and adapted by
Le Chen
April 15, 2021
le.chen@emory.edu
Course page
http://math.emory.edu/~lchen41/teaching/2021_Spring_Math221

by W. Keith Nicholson

Contents

1 Systems of Linear Equations 5
1.1 Solutions and Elementary Operations 6
1.2 Gaussian Elimination 16
1.3 Homogeneous Equations 28
Supplementary Exercises for Chapter 1 37
2 Matrix Algebra 39
2.1 Matrix Addition, Scalar Multiplication, and Transposition 40
2.2 Matrix-Vector Multiplication 53
2.3 Matrix Multiplication 72
2.4 Matrix Inverses 91
2.5 Elementary Matrices 109
2.6 Linear Transformations 119
2.7 LU-Factorization 135
3 Determinants and Diagonalization 147
3.1 The Cofactor Expansion 148
3.2 Determinants and Matrix Inverses 163
3.3 Diagonalization and Eigenvalues 178
Supplementary Exercises for Chapter 3 201
4 Vector Geometry 203
4.1 Vectors and Lines 204
4.2 Projections and Planes 223
4.3 More on the Cross Product 244
4.4 Linear Operators on \mathbb{R}^{3} 251
Supplementary Exercises for Chapter 4 260
5 Vector Space \mathbb{R}^{n} 263
5.1 Subspaces and Spanning 264
5.2 Independence and Dimension 273
5.3 Orthogonality 287
5.4 Rank of a Matrix 297
5.5 Similarity and Diagonalization 307
Supplementary Exercises for Chapter 5 320
6 Vector Spaces 321
6.1 Examples and Basic Properties 322
6.2 Subspaces and Spanning Sets 333
6.3 Linear Independence and Dimension 342
6.4 Finite Dimensional Spaces 354
Supplementary Exercises for Chapter 6 364
7 Linear Transformations 365
7.1 Examples and Elementary Properties 366
7.2 Kernel and Image of a Linear Transformation 374
7.3 Isomorphisms and Composition 385
8 Orthogonality 399
8.1 Orthogonal Complements and Projections 400
8.2 Orthogonal Diagonalization 410
8.3 Positive Definite Matrices 421
8.4 QR-Factorization 427
8.5 Computing Eigenvalues 431
8.6 The Singular Value Decomposition 436
8.6.1 Singular Value Decompositions 436
8.6.2 Fundamental Subspaces 442
8.6.3 The Polar Decomposition of a Real Square Matrix 445
8.6.4 The Pseudoinverse of a Matrix 447

6.3 Linear Independence and Dimension

Definition 6.4 Linear Independence and Dependence

As in \mathbb{R}^{n}, a set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ in a vector space V is called linearly independent (or simply independent) if it satisfies the following condition:

$$
\text { If } \quad s_{1} \boldsymbol{v}_{1}+s_{2} \boldsymbol{v}_{2}+\cdots+s_{n} \boldsymbol{v}_{n}=\boldsymbol{0}, \quad \text { then } \quad s_{1}=s_{2}=\cdots=s_{n}=0 .
$$

A set of vectors that is not linearly independent is said to be linearly dependent (or simply dependent).

The trivial linear combination of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is the one with every coefficient zero:

$$
0 \mathbf{v}_{1}+0 \mathbf{v}_{2}+\cdots+0 \mathbf{v}_{n}
$$

This is obviously one way of expressing $\mathbf{0}$ as a linear combination of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$, and they are linearly independent when it is the only way.

Example 6.3.1

Show that $\left\{1+x, 3 x+x^{2}, 2+x-x^{2}\right\}$ is independent in \mathbf{P}_{2}.
Solution. Suppose a linear combination of these polynomials vanishes.

$$
s_{1}(1+x)+s_{2}\left(3 x+x^{2}\right)+s_{3}\left(2+x-x^{2}\right)=0
$$

Equating the coefficients of $1, x$, and x^{2} gives a set of linear equations.

$$
\begin{aligned}
s_{1}+2 s_{3} & =0 \\
s_{1}+3 s_{2}+s_{3} & =0 \\
s_{2}-s_{3} & =0
\end{aligned}
$$

The only solution is $s_{1}=s_{2}=s_{3}=0$.

Example 6.3.2

Show that $\{\sin x, \cos x\}$ is independent in the vector space $\mathbf{F}[0,2 \pi]$ of functions defined on the interval $[0,2 \pi]$.

Solution. Suppose that a linear combination of these functions vanishes.

$$
s_{1}(\sin x)+s_{2}(\cos x)=0
$$

This must hold for all values of x in $[0,2 \pi]$ (by the definition of equality in $\mathbf{F}[0,2 \pi]$). Taking $x=0$ yields $s_{2}=0$ (because $\sin 0=0$ and $\cos 0=1$). Similarly, $s_{1}=0$ follows from taking $x=\frac{\pi}{2}$ (because $\sin \frac{\pi}{2}=1$ and $\cos \frac{\pi}{2}=0$).

Example 6.3.3

Suppose that $\{\mathbf{u}, \mathbf{v}\}$ is an independent set in a vector space V. Show that $\{\mathbf{u}+2 \mathbf{v}, \mathbf{u}-3 \mathbf{v}\}$ is also independent.

Solution. Suppose a linear combination of $\mathbf{u}+2 \mathbf{v}$ and $\mathbf{u}-3 \mathbf{v}$ vanishes:

$$
s(\mathbf{u}+2 \mathbf{v})+t(\mathbf{u}-3 \mathbf{v})=\mathbf{0}
$$

We must deduce that $s=t=0$. Collecting terms involving \mathbf{u} and \mathbf{v} gives

$$
(s+t) \mathbf{u}+(2 s-3 t) \mathbf{v}=\mathbf{0}
$$

Because $\{\mathbf{u}, \mathbf{v}\}$ is independent, this yields linear equations $s+t=0$ and $2 s-3 t=0$. The only solution is $s=t=0$.

Example 6.3.4

Show that any set of polynomials of distinct degrees is independent.
Solution. Let $p_{1}, p_{2}, \ldots, p_{m}$ be polynomials where $\operatorname{deg}\left(p_{i}\right)=d_{i}$. By relabelling if necessary, we may assume that $d_{1}>d_{2}>\cdots>d_{m}$. Suppose that a linear combination vanishes:

$$
t_{1} p_{1}+t_{2} p_{2}+\cdots+t_{m} p_{m}=0
$$

where each t_{i} is in \mathbb{R}. As $\operatorname{deg}\left(p_{1}\right)=d_{1}$, let $a x^{d_{1}}$ be the term in p_{1} of highest degree, where $a \neq 0$. Since $d_{1}>d_{2}>\cdots>d_{m}$, it follows that $t_{1} a x^{d_{1}}$ is the only term of degree d_{1} in the linear combination $t_{1} p_{1}+t_{2} p_{2}+\cdots+t_{m} p_{m}=0$. This means that $t_{1} a x^{d_{1}}=0$, whence $t_{1} a=0$, hence $t_{1}=0$ (because $a \neq 0$). But then $t_{2} p_{2}+\cdots+t_{m} p_{m}=0$ so we can repeat the argument to show that $t_{2}=0$. Continuing, we obtain $t_{i}=0$ for each i, as desired.

Example 6.3.5

Suppose that A is an $n \times n$ matrix such that $A^{k}=0$ but $A^{k-1} \neq 0$. Show that $B=\left\{I, A, A^{2}, \ldots, A^{k-1}\right\}$ is independent in $\mathbf{M}_{n n}$.

Solution. Suppose $r_{0} I+r_{1} A+r_{2} A^{2}+\cdots+r_{k-1} A^{k-1}=0$. Multiply by A^{k-1} :

$$
r_{0} A^{k-1}+r_{1} A^{k}+r_{2} A^{k+1}+\cdots+r_{k-1} A^{2 k-2}=0
$$

Since $A^{k}=0$, all the higher powers are zero, so this becomes $r_{0} A^{k-1}=0$. But $A^{k-1} \neq 0$, so $r_{0}=0$, and we have $r_{1} A^{1}+r_{2} A^{2}+\cdots+r_{k-1} A^{k-1}=0$. Now multiply by A^{k-2} to conclude that $r_{1}=0$. Continuing, we obtain $r_{i}=0$ for each i, so B is independent.

The next example collects several useful properties of independence for reference.

Example 6.3.6

Let V denote a vector space.

1. If $\mathbf{v} \neq \mathbf{0}$ in V, then $\{\mathbf{v}\}$ is an independent set.
2. No independent set of vectors in V can contain the zero vector.

Solution.

1. Let $t \mathbf{v}=\mathbf{0}, t$ in \mathbb{R}. If $t \neq 0$, then $\mathbf{v}=1 \mathbf{v}=\frac{1}{t}(t \mathbf{v})=\frac{1}{t} \mathbf{0}=\mathbf{0}$, contrary to assumption. So $t=0$.
2. If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is independent and (say) $\mathbf{v}_{2}=\mathbf{0}$, then $0 \mathbf{v}_{1}+1 \mathbf{v}_{2}+\cdots+0 \mathbf{v}_{k}=\mathbf{0}$ is a nontrivial linear combination that vanishes, contrary to the independence of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$.

A set of vectors is independent if $\mathbf{0}$ is a linear combination in a unique way. The following theorem shows that every linear combination of these vectors has uniquely determined coefficients, and so extends Theorem 5.2.1.

Theorem 6.3.1

Let $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be a linearly independent set of vectors in a vector space V. If a vector \boldsymbol{v} has two (ostensibly different) representations

$$
\begin{aligned}
& \mathbf{v}=s_{1} \mathbf{v}_{1}+s_{2} \mathbf{v}_{2}+\cdots+s_{n} \mathbf{v}_{n} \\
& \mathbf{v}=t_{1} \mathbf{v}_{1}+t_{2} \mathbf{v}_{2}+\cdots+t_{n} \mathbf{v}_{n}
\end{aligned}
$$

as linear combinations of these vectors, then $s_{1}=t_{1}, s_{2}=t_{2}, \ldots, s_{n}=t_{n}$. In other words, every vector in V can be written in a unique way as a linear combination of the \boldsymbol{v}_{i}.

Proof. Subtracting the equations given in the theorem gives

$$
\left(s_{1}-t_{1}\right) \mathbf{v}_{1}+\left(s_{2}-t_{2}\right) \mathbf{v}_{2}+\cdots+\left(s_{n}-t_{n}\right) \mathbf{v}_{n}=\mathbf{0}
$$

The independence of $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ gives $s_{i}-t_{i}=0$ for each i, as required.
The following theorem extends (and proves) Theorem 5.2.4, and is one of the most useful results in linear algebra.

Theorem 6.3.2: Fundamental Theorem

can be spanned by n vectors. If any set of m vectors in V is linearly independent, then $m \leq n$.

Proof. Let $V=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$, and suppose that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m}\right\}$ is an independent set in V. Then $\mathbf{u}_{1}=a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+\cdots+a_{n} \mathbf{v}_{n}$ where each a_{i} is in \mathbb{R}. As $\mathbf{u}_{1} \neq \mathbf{0}$ (Example 6.3.6), not all of the
a_{i} are zero, say $a_{1} \neq 0$ (after relabelling the \mathbf{v}_{i}). Then $V=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n}\right\}$ as the reader can verify. Hence, write $\mathbf{u}_{2}=b_{1} \mathbf{u}_{1}+c_{2} \mathbf{v}_{2}+c_{3} \mathbf{v}_{3}+\cdots+c_{n} \mathbf{v}_{n}$. Then some $c_{i} \neq 0$ because $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}\right\}$ is independent; so, as before, $V=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{v}_{3}, \ldots, \mathbf{v}_{n}\right\}$, again after possible relabelling of the \mathbf{v}_{i}. If $m>n$, this procedure continues until all the vectors \mathbf{v}_{i} are replaced by the vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$. In particular, $V=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}\right\}$. But then \mathbf{u}_{n+1} is a linear combination of $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{n}$ contrary to the independence of the \mathbf{u}_{i}. Hence, the assumption $m>n$ cannot be valid, so $m \leq n$ and the theorem is proved.

If $V=\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$, and if $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m}\right\}$ is an independent set in V, the above proof shows not only that $m \leq n$ but also that m of the (spanning) vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ can be replaced by the (independent) vectors $\mathbf{u}_{1}, \mathbf{u}_{2}, \ldots, \mathbf{u}_{m}$ and the resulting set will still span V. In this form the result is called the Steinitz Exchange Lemma.

Definition 6.5 Basis of a Vector Space

As in \mathbb{R}^{n}, a set $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{n}\right\}$ of vectors in a vector space V is called a basis of V if it satisfies the following two conditions:

1. $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is linearly independent
2. $V=\operatorname{span}\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{n}\right\}$

Thus if a set of vectors $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is a basis, then every vector in V can be written as a linear combination of these vectors in a unique way (Theorem 6.3.1). But even more is true: Any two (finite) bases of V contain the same number of vectors.

Theorem 6.3.3: Invariance Theorem

Let $\left\{\boldsymbol{e}_{1}, \mathbf{e}_{2}, \ldots, \boldsymbol{e}_{n}\right\}$ and $\left\{\boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \ldots, \boldsymbol{f}_{m}\right\}$ be two bases of a vector space V. Then $n=m$.

Proof. Because $V=\operatorname{span}\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ and $\left\{\mathbf{f}_{1}, \mathbf{f}_{2}, \ldots, \mathbf{f}_{m}\right\}$ is independent, it follows from Theorem 6.3.2 that $m \leq n$. Similarly $n \leq m$, so $n=m$, as asserted.

Theorem 6.3.3 guarantees that no matter which basis of V is chosen it contains the same number of vectors as any other basis. Hence there is no ambiguity about the following definition.

Definition 6.6 Dimension of a Vector Space

If $\left\{\boldsymbol{e}_{1}, \boldsymbol{e}_{2}, \ldots, \boldsymbol{e}_{n}\right\}$ is a basis of the nonzero vector space V, the number n of vectors in the basis is called the dimension of V, and we write

$$
\operatorname{dim} V=n
$$

The zero vector space $\{\boldsymbol{0}\}$ is defined to have dimension 0 :

$$
\operatorname{dim}\{\boldsymbol{0}\}=0
$$

In our discussion to this point we have always assumed that a basis is nonempty and hence that the dimension of the space is at least 1 . However, the zero space $\{0\}$ has no basis (by Example 6.3.6) so our insistence that $\operatorname{dim}\{\mathbf{0}\}=0$ amounts to saying that the empty set of vectors is a basis of $\{\mathbf{0}\}$. Thus the statement that "the dimension of a vector space is the number of vectors in any basis" holds even for the zero space.

We saw in Example 5.2.9 that $\operatorname{dim}\left(\mathbb{R}^{n}\right)=n$ and, if \mathbf{e}_{j} denotes column j of I_{n}, that $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \ldots, \mathbf{e}_{n}\right\}$ is a basis (called the standard basis). In Example 6.3.7 below, similar considerations apply to the space $\mathbf{M}_{m n}$ of all $m \times n$ matrices; the verifications are left to the reader.

Example 6.3.7

The space $\mathbf{M}_{m n}$ has dimension $m n$, and one basis consists of all $m \times n$ matrices with exactly one entry equal to 1 and all other entries equal to 0 . We call this the standard basis of $\mathbf{M}_{m n}$.

Example 6.3.8

Show that $\operatorname{dim} \mathbf{P}_{n}=n+1$ and that $\left\{1, x, x^{2}, \ldots, x^{n}\right\}$ is a basis, called the standard basis of \mathbf{P}_{n}.

Solution. Each polynomial $p(x)=a_{0}+a_{1} x+\cdots+a_{n} x^{n}$ in \mathbf{P}_{n} is clearly a linear combination of $1, x, \ldots, x^{n}$, so $\mathbf{P}_{n}=\operatorname{span}\left\{1, x, \ldots, x^{n}\right\}$. However, if a linear combination of these vectors vanishes, $a_{0} 1+a_{1} x+\cdots+a_{n} x^{n}=0$, then $a_{0}=a_{1}=\cdots=a_{n}=0$ because x is an indeterminate. So $\left\{1, x, \ldots, x^{n}\right\}$ is linearly independent and hence is a basis containing $n+1$ vectors. Thus, $\operatorname{dim}\left(\mathbf{P}_{n}\right)=n+1$.

Example 6.3.9

If $\mathbf{v} \neq \mathbf{0}$ is any nonzero vector in a vector space V, show that $\operatorname{span}\{\mathbf{v}\}=\mathbb{R} \mathbf{v}$ has dimension 1 .
Solution. $\{\mathbf{v}\}$ clearly spans $\mathbb{R} \mathbf{v}$, and it is linearly independent by Example 6.3.6. Hence $\{\mathbf{v}\}$ is a basis of $\mathbb{R} \mathbf{v}$, and so $\operatorname{dim} \mathbb{R} \mathbf{v}=1$.

Example 6.3.10

Let $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ and consider the subspace

$$
U=\left\{X \text { in } \mathrm{M}_{22} \mid A X=X A\right\}
$$

of \mathbf{M}_{22}. Show that $\operatorname{dim} U=2$ and find a basis of U.
Solution. It was shown in Example 6.2.3 that U is a subspace for any choice of the matrix A. In the present case, if $X=\left[\begin{array}{cc}x & y \\ z & w\end{array}\right]$ is in U, the condition $A X=X A$ gives $z=0$ and $x=y+w$. Hence each matrix X in U can be written

$$
X=\left[\begin{array}{cc}
y+w & y \\
0 & w
\end{array}\right]=y\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]+w\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

so $U=$ span B where $B=\left\{\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right\}$. Moreover, the set B is linearly independent (verify this), so it is a basis of U and $\operatorname{dim} U=2$.

Example 6.3.11

Show that the set V of all symmetric 2×2 matrices is a vector space, and find the dimension of V.

Solution. A matrix A is symmetric if $A^{T}=A$. If A and B lie in V, then

$$
(A+B)^{T}=A^{T}+B^{T}=A+B \quad \text { and } \quad(k A)^{T}=k A^{T}=k A
$$

using Theorem 2.1.2. Hence $A+B$ and $k A$ are also symmetric. As the 2×2 zero matrix is also in V, this shows that V is a vector space (being a subspace of \mathbf{M}_{22}). Now a matrix A is symmetric when entries directly across the main diagonal are equal, so each 2×2 symmetric matrix has the form

$$
\left[\begin{array}{ll}
a & c \\
c & b
\end{array}\right]=a\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+b\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]+c\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

Hence the set $B=\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\right\}$ spans V, and the reader can verify that B is linearly independent. Thus B is a basis of V, so $\operatorname{dim} V=3$.

It is frequently convenient to alter a basis by multiplying each basis vector by a nonzero scalar. The next example shows that this always produces another basis. The proof is left as Exercise 6.3.22.

Example 6.3.12

Let $B=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$ be nonzero vectors in a vector space V. Given nonzero scalars $a_{1}, a_{2}, \ldots, a_{n}$, write $D=\left\{a_{1} \mathbf{v}_{1}, a_{2} \mathbf{v}_{2}, \ldots, a_{n} \mathbf{v}_{n}\right\}$. If B is independent or spans V, the same is true of D. In particular, if B is a basis of V, so also is D.

Exercises for 6.3

Exercise 6.3.1 Show that each of the following sets of vectors is independent.
a. $\left\{1+x, 1-x, x+x^{2}\right\}$ in \mathbf{P}_{2}
b. $\left\{x^{2}, x+1,1-x-x^{2}\right\}$ in \mathbf{P}_{2}

$$
\left\{\underset{\text { in }}{\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]},\left[\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right],\left[\begin{array}{rr}
0 & 0 \\
1 & -1
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right]\right\}
$$

$$
\left\{\underset{\text { in } \mathbf{M}_{22}}{\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]},\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right],\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]\right\}
$$

\qquad
b. If $a x^{2}+b(x+1)+c\left(1-x-x^{2}\right)=0$, then $a+c=$ $0, b-c=0, b+c=0$, so $a=b=c=0$.
d. If $a\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]+b\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]+c\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]+$ $d\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$, then $a+c+d=0$, $a+b+d=0, a+b+c=0$, and $b+c+d=0$, so $a=b=c=d=0$.

Exercise 6.3.2 Which of the following subsets of V are independent?
a. $\{(1,-1,0),(a, 1,0),(0,2,3)\}$
b. $\{(2, a, 1),(1,0,1),(0,1,3)\}$
b. $x \neq-\frac{1}{3}$

Exercise 6.3.5 Show that the following are bases of the space V indicated.
a. $\{(1,1,0),(1,0,1),(0,1,1)\} ; V=\mathbb{R}^{3}$
b. $\{(-1,1,1),(1,-1,1),(1,1,-1)\} ; V=\mathbb{R}^{3}$
c. $\left.\left\{\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]\right\} ;$
d. $\left\{1+x, x+x^{2}, x^{2}+x^{3}, x^{3}\right\} ; V=\mathbf{P}_{3}$
b. If $r(-1,1,1)+s(1,-1,1)+t(1,1,-1)=$ $(0,0,0)$, then $-r+s+t=0, r-s+t=0$, and $r-s-t=0$, and this implies that $r=s=$ $t=0$. This proves independence. To prove that they $\operatorname{span} \mathbb{R}^{3}$, observe that $(0,0,1)=$ $\frac{1}{2}[(-1,1,1)+(1,-1,1)]$ so $(0,0,1)$ lies in $\operatorname{span}\{(-1,1,1),(1,-1,1),(1,1,-1)\}$. The proof is similar for $(0,1,0)$ and $(1,0,0)$.
d. If $r(1+x)+s\left(x+x^{2}\right)+t\left(x^{2}+x^{3}\right)+u x^{3}=0$, then $r=0, r+s=0, s+t=0$, and $t+u=0$, so $r=s=t=u=0$. This proves independence. To show that they span \mathbf{P}_{3}, observe that $x^{2}=\left(x^{2}+x^{3}\right)-x^{3}, x=\left(x+x^{2}\right)-x^{2}$, and $1=(1+x)-x$, so $\left\{1, x, x^{2}, x^{3}\right\} \subseteq \operatorname{span}\{1+$ $\left.x, x+x^{2}, x^{2}+x^{3}, x^{3}\right\}$.

Exercise 6.3.6 Exhibit a basis and calculate the dimension of each of the following subspaces of \mathbf{P}_{2}.
a. $\left\{a(1+x)+b\left(x+x^{2}\right) \mid a\right.$ and b in $\left.\mathbb{R}\right\}$
b. $\left\{a+b\left(x+x^{2}\right) \mid a\right.$ and b in $\left.\mathbb{R}\right\}$
c. $\{p(x) \mid p(1)=0\}$
d. $\{p(x) \mid p(x)=p(-x)\}$
b. $\left\{1, x+x^{2}\right\}$; dimension $=2$
d. $\left\{1, x^{2}\right\}$; dimension $=2$

Exercise 6.3.7 Exhibit a basis and calculate the dimension of each of the following subspaces of \mathbf{M}_{22}.
a. $\left\{A \mid A^{T}=-A\right\}$
b. $\left\{A \left\lvert\, A\left[\begin{array}{rr}1 & 1 \\ -1 & 0\end{array}\right]=\left[\begin{array}{rr}1 & 1 \\ -1 & 0\end{array}\right] A\right.\right\}$
c. $\left\{A \left\lvert\, A\left[\begin{array}{rr}1 & 0 \\ -1 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right.\right\}$
d. $\left\{A \left\lvert\, A\left[\begin{array}{rr}1 & 1 \\ -1 & 0\end{array}\right]=\left[\begin{array}{rr}0 & 1 \\ -1 & 1\end{array}\right] A\right.\right\}$
b. $\left\{\left[\begin{array}{rr}1 & 1 \\ -1 & 0\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]\right\} ;$ dimension $=2$
d. $\left\{\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]\right\} ;$ dimension $=2$

Exercise 6.3.8 Let $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]$ and define $U=\left\{X \mid X \in \mathrm{M}_{22}\right.$ and $\left.A X=X\right\}$.
a. Find a basis of U containing A.
b. Find a basis of U not containing A.
b. $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\right\}$

Exercise 6.3.9 Show that the set \mathbb{C} of all complex numbers is a vector space with the usual operations, and find its dimension.

Exercise 6.3.10

a. Let V denote the set of all 2×2 matrices with equal column sums. Show that V is a subspace of \mathbf{M}_{22}, and compute $\operatorname{dim} V$.
b. Repeat part (a) for 3×3 matrices.
c. Repeat part (a) for $n \times n$ matrices.
b. $\operatorname{dim} V=7$

Exercise 6.3.11

a. Let $V=\left\{\left(x^{2}+x+1\right) p(x) \mid p(x)\right.$ in $\left.\mathbf{P}_{2}\right\}$. Show that V is a subspace of \mathbf{P}_{4} and find $\operatorname{dim} V$. [Hint: If $f(x) g(x)=0$ in \mathbf{P}, then $f(x)=0$ or $g(x)=0$.]
b. Repeat with $V=\left\{\left(x^{2}-x\right) p(x) \mid p(x)\right.$ in $\left.\mathbf{P}_{3}\right\}$, a subset of \mathbf{P}_{5}.
c. Generalize.
b. $\left\{x^{2}-x, x\left(x^{2}-x\right), x^{2}\left(x^{2}-x\right), x^{3}\left(x^{2}-x\right)\right\}$; $\operatorname{dim} V=4$

Exercise 6.3.12 In each case, either prove the assertion or give an example showing that it is false.
a. Every set of four nonzero polynomials in \mathbf{P}_{3} is a basis.
b. \mathbf{P}_{2} has a basis of polynomials $f(x)$ such that $f(0)=0$.
c. \mathbf{P}_{2} has a basis of polynomials $f(x)$ such that $f(0)=1$.
d. Every basis of \mathbf{M}_{22} contains a noninvertible matrix.
e. No independent subset of \mathbf{M}_{22} contains a ma$\operatorname{trix} A$ with $A^{2}=0$.
f. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is independent then, $a \mathbf{u}+b \mathbf{v}+$ $c \mathbf{w}=\mathbf{0}$ for some a, b, c.
g. $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is independent if $a \mathbf{u}+b \mathbf{v}+c \mathbf{w}=\mathbf{0}$ for some a, b, c.
h. If $\{\mathbf{u}, \mathbf{v}\}$ is independent, so is $\{\mathbf{u}, \mathbf{u}+\mathbf{v}\}$.
i. If $\{\mathbf{u}, \mathbf{v}\}$ is independent, so is $\{\mathbf{u}, \mathbf{v}, \mathbf{u}+\mathbf{v}\}$.
j. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is independent, so is $\{\mathbf{u}, \mathbf{v}\}$.
k. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is independent, so is $\{\mathbf{u}+\mathbf{w}, \mathbf{v}+$ $w\}$.
l. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is independent, so is $\{\mathbf{u}+\mathbf{v}+\mathbf{w}\}$.
m . If $\mathbf{u} \neq \mathbf{0}$ and $\mathbf{v} \neq \mathbf{0}$ then $\{\mathbf{u}, \mathbf{v}\}$ is dependent if and only if one is a scalar multiple of the other.
n. If $\operatorname{dim} V=n$, then no set of more than n vectors can be independent.
o. If $\operatorname{dim} V=n$, then no set of fewer than n vectors can span V.
b. No. Any linear combination f of such polynomials has $f(0)=0$.
d. No.
$\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right],\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]\right\} ;$ consists of invertible matrices.
f. Yes. $0 \mathbf{u}+0 \mathbf{v}+0 \mathbf{w}=\mathbf{0}$ for every set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.
h. Yes. $s \mathbf{u}+t(\mathbf{u}+\mathbf{v})=\mathbf{0}$ gives $(s+t) \mathbf{u}+t \mathbf{v}=\mathbf{0}$, whence $s+t=0=t$.
j. Yes. If $r \mathbf{u}+s \mathbf{v}=\mathbf{0}$, then $r \mathbf{u}+s \mathbf{v}+0 \mathbf{w}=\mathbf{0}$, so $r=0=s$.

1. Yes. $\mathbf{u}+\mathbf{v}+\mathbf{w} \neq \mathbf{0}$ because $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is independent.
n . Yes. If I is independent, then $|I| \leq n$ by the fundamental theorem because any basis spans V.

Exercise 6.3.13 Let $A \neq 0$ and $B \neq 0$ be $n \times n$ matrices, and assume that A is symmetric and B is skewsymmetric (that is, $B^{T}=-B$). Show that $\{A, B\}$ is independent.
Exercise 6.3.14 Show that every set of vectors containing a dependent set is again dependent.

Exercise 6.3.15 Show that every nonempty subset of an independent set of vectors is again independent.
If a linear combination of the subset vanishes, it is a linear combination of the vectors in the larger set
(coefficients outside the subset are zero) so it is trivial.

Exercise 6.3.16 Let f and g be functions on $[a, b]$, and assume that $f(a)=1=g(b)$ and $f(b)=0=g(a)$. Show that $\{f, g\}$ is independent in $\mathbf{F}[a, b]$.

Exercise 6.3.17 Let $\left\{A_{1}, A_{2}, \ldots, A_{k}\right\}$ be independent in $\mathbf{M}_{m n}$, and suppose that U and V are invertible matrices of size $m \times m$ and $n \times n$, respectively. Show that $\left\{U A_{1} V, U A_{2} V, \ldots, U A_{k} V\right\}$ is independent.

Exercise 6.3.18 Show that $\{\mathbf{v}, \mathbf{w}\}$ is independent if and only if neither \mathbf{v} nor \mathbf{w} is a scalar multiple of the other.

Exercise 6.3.19 Assume that $\{\mathbf{u}, \mathbf{v}\}$ is independent in a vector space V. Write $\mathbf{u}^{\prime}=a \mathbf{u}+b \mathbf{v}$ and $\mathbf{v}^{\prime}=c \mathbf{u}+d \mathbf{v}$, where a, b, c, and d are numbers. Show that $\left\{\mathbf{u}^{\prime}, \mathbf{v}^{\prime}\right\}$ is independent if and only if the ma$\operatorname{trix}\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]$ is invertible. [Hint: Theorem 2.4.5.] Because $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent, $s \mathbf{u}^{\prime}+t \mathbf{v}^{\prime}=\mathbf{0}$ is equivalent to $\left[\begin{array}{ll}a & c \\ b & d\end{array}\right]\left[\begin{array}{l}s \\ t\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$. Now apply Theorem 2.4.5.
Exercise 6.3.20 If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is independent and \mathbf{w} is not in $\operatorname{span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$, show that:
a. $\left\{\mathbf{w}, \mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is independent.
b. $\left\{\mathbf{v}_{1}+\mathbf{w}, \mathbf{v}_{2}+\mathbf{w}, \ldots, \mathbf{v}_{k}+\mathbf{w}\right\}$ is independent.

Exercise 6.3.21 If $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}$ is independent, show that $\left\{\mathbf{v}_{1}, \mathbf{v}_{1}+\mathbf{v}_{2}, \ldots, \mathbf{v}_{1}+\mathbf{v}_{2}+\cdots+\mathbf{v}_{k}\right\}$ is also independent.
Exercise 6.3.22 Prove Example 6.3.12.
Exercise 6.3.23 Let $\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z}\}$ be independent. Which of the following are dependent?
a. $\{\mathbf{u}-\mathbf{v}, \mathbf{v}-\mathbf{w}, \mathbf{w}-\mathbf{u}\}$
b. $\{\mathbf{u}+\mathbf{v}, \mathbf{v}+\mathbf{w}, \mathbf{w}+\mathbf{u}\}$
c. $\{\mathbf{u}-\mathbf{v}, \mathbf{v}-\mathbf{w}, \mathbf{w}-\mathbf{z}, \mathbf{z}-\mathbf{u}\}$
d. $\{\mathbf{u}+\mathbf{v}, \mathbf{v}+\mathbf{w}, \mathbf{w}+\mathbf{z}, \mathbf{z}+\mathbf{u}\}$
b. Independent.
d. Dependent. For example, $(\mathbf{u}+\mathbf{v})-(\mathbf{v}+\mathbf{w})+$ $(\mathbf{w}+\mathbf{z})-(\mathbf{z}+\mathbf{u})=\mathbf{0}$.

Exercise 6.3.24 Let U and W be subspaces of V with bases $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ and $\left\{\mathbf{w}_{1}, \mathbf{w}_{2}\right\}$ respectively. If U and W have only the zero vector in common, show that $\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{w}_{1}, \mathbf{w}_{2}\right\}$ is independent.

Exercise 6.3.25 Let $\{p, q\}$ be independent polynomials. Show that $\{p, q, p q\}$ is independent if and only if $\operatorname{deg} p \geq 1$ and $\operatorname{deg} q \geq 1$.

Exercise 6.3.26 If z is a complex number, show that $\left\{z, z^{2}\right\}$ is independent if and only if z is not real.

If z is not real and $a z+b z^{2}=0$, then $a+b z=0(z \neq 0)$. Hence if $b \neq 0$, then $z=-a b^{-1}$ is real. So $b=0$, and so $a=0$. Conversely, if z is real, say $z=a$, then $(-a) z+1 z^{2}=0$, contrary to the independence of $\left\{z, z^{2}\right\}$.

Exercise 6.3.27 Let $B=\left\{A_{1}, A_{2}, \ldots, A_{n}\right\} \subseteq \mathbf{M}_{m n}$, and write $B^{\prime}=\left\{A_{1}^{T}, A_{2}^{T}, \ldots, A_{n}^{T}\right\} \subseteq \mathbf{M}_{n m}$. Show that:
a. B is independent if and only if B^{\prime} is independent.
b. B spans $\mathbf{M}_{m n}$ if and only if B^{\prime} spans $\mathbf{M}_{n m}$.

Exercise 6.3.28 If $V=\mathbf{F}[a, b]$ as in Example 6.1.7, show that the set of constant functions is a subspace of dimension $1(f$ is constant if there is a number c such that $f(x)=c$ for all x).

Exercise 6.3.29
a. If U is an invertible $n \times n$ matrix and $\left\{A_{1}, A_{2}, \ldots, A_{m n}\right\}$ is a basis of $\mathbf{M}_{m n}$, show that $\left\{A_{1} U, A_{2} U, \ldots, A_{m n} U\right\}$ is also a basis.
b. Show that part (a) fails if U is not invertible. [Hint: Theorem 2.4.5.]
b. If $U \mathbf{x}=\mathbf{0}, \mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^{n}, then $R \mathbf{x}=\mathbf{0}$ where $R \neq 0$ is row 1 of U. If $B \in \mathbf{M}_{m n}$ has each row equal to R, then $B \mathbf{x} \neq \mathbf{0}$. But if $B=\sum r_{i} A_{i} U$, then $B \mathbf{x}=\sum r_{i} A_{i} U \mathbf{x}=\mathbf{0}$. So $\left\{A_{i} U\right\}$ cannot span $\mathrm{M}_{m n}$.

Exercise 6.3.30 Show that $\left\{(a, b),\left(a_{1}, b_{1}\right)\right\}$ is a basis of \mathbb{R}^{2} if and only if $\left\{a+b x, a_{1}+b_{1} x\right\}$ is a basis of \mathbf{P}_{1}.

Exercise 6.3.31 Find the dimension of the subspace span $\left\{1, \sin ^{2} \theta, \cos 2 \theta\right\}$ of $\mathbf{F}[0,2 \pi]$.
Exercise 6.3.32 Show that $\mathbf{F}[0,1]$ is not finite dimensional.

Exercise 6.3.33 If U and W are subspaces of V, define their intersection $U \cap W$ as follows: $U \cap W=$ $\{\mathbf{v} \mid \mathbf{v}$ is in both U and $W\}$
a. Show that $U \cap W$ is a subspace contained in U and W.
b. Show that $U \cap W=\{\mathbf{0}\}$ if and only if $\{\mathbf{u}, \mathbf{w}\}$ is independent for any nonzero vectors \mathbf{u} in U and \mathbf{w} in W.
c. If B and D are bases of U and W, and if $U \cap W=\{\mathbf{0}\}$, show that $B \cup D=\{\mathbf{v} \mid$ \mathbf{v} is in B or $D\}$ is independent.
b. If $U \cap W=0$ and $r \mathbf{u}+s \mathbf{w}=\mathbf{0}$, then $r \mathbf{u}=-s \mathbf{w}$ is in $U \cap W$, so $r \mathbf{u}=\mathbf{0}=s \mathbf{w}$. Hence $r=0=s$ because $\mathbf{u} \neq \mathbf{0} \neq \mathbf{w}$. Conversely, if $\mathbf{v} \neq \mathbf{0}$ lies in $U \cap W$, then $1 \mathbf{v}+(-1) \mathbf{v}=\mathbf{0}$, contrary to hypothesis.

Exercise 6.3.34 If U and W are vector spaces, let $V=\{(\mathbf{u}, \mathbf{w}) \mid \mathbf{u}$ in U and \mathbf{w} in $W\}$.
a. Show that V is a vector space if $(\mathbf{u}, \mathbf{w})+$ $\left(\mathbf{u}_{1}, \mathbf{w}_{1}\right)=\left(\mathbf{u}+\mathbf{u}_{1}, \mathbf{w}+\mathbf{w}_{1}\right)$ and $a(\mathbf{u}, \mathbf{w})=$ ($a \mathbf{u}, a \mathbf{w}$).
b. If $\operatorname{dim} U=m$ and $\operatorname{dim} W=n$, show that $\operatorname{dim} V=m+n$.
c. If V_{1}, \ldots, V_{m} are vector spaces, let

$$
\begin{aligned}
V & =V_{1} \times \cdots \times V_{m} \\
& =\left\{\left(\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}\right) \mid \mathbf{v}_{i} \in V_{i} \text { for each } i\right\}
\end{aligned}
$$

denote the space of n-tuples from the V_{i} with componentwise operations (see Exercise 6.1.17). If $\operatorname{dim} V_{i}=n_{i}$ for each i, show that $\operatorname{dim} V=n_{1}+\cdots+n_{m}$.

Exercise 6.3.35 Let \mathbf{D}_{n} denote the set of all functions f from the set $\{1,2, \ldots, n\}$ to \mathbb{R}.
a. Show that \mathbf{D}_{n} is a vector space with pointwise addition and scalar multiplication.
b. Show that $\left\{S_{1}, S_{2}, \ldots, S_{n}\right\}$ is a basis of \mathbf{D}_{n} where, for each $k=1,2, \ldots, n$, the function S_{k} is defined by $S_{k}(k)=1$, whereas $S_{k}(j)=0$ if $j \neq k$.

Exercise 6.3.36 A polynomial $p(x)$ is called even if $p(-x)=p(x)$ and odd if $p(-x)=-p(x)$. Let E_{n} and O_{n} denote the sets of even and odd polynomials in \mathbf{P}_{n}.
a. Show that E_{n} is a subspace of \mathbf{P}_{n} and find $\operatorname{dim} E_{n}$.
b. Show that O_{n} is a subspace of \mathbf{P}_{n} and find $\operatorname{dim} O_{n}$.
b. $\operatorname{dim} O_{n}=\frac{n}{2}$ if n is even and $\operatorname{dim} O_{n}=\frac{n+1}{2}$ if n is odd.

Exercise 6.3.37 Let $\left\{\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}\right\}$ be independent in a vector space V, and let A be an $n \times n$ matrix. Define $\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}$ by

$$
\left[\begin{array}{c}
\mathbf{u}_{1} \\
\vdots \\
\mathbf{u}_{n}
\end{array}\right]=A\left[\begin{array}{c}
\mathbf{v}_{1} \\
\vdots \\
\mathbf{v}_{n}
\end{array}\right]
$$

(See Exercise 6.1.18.) Show that $\left\{\mathbf{u}_{1}, \ldots, \mathbf{u}_{n}\right\}$ is independent if and only if A is invertible.
6.3. Linear Independence and Dimension ■ 453

