

LINEAR ALGEBRA with Applications

Open Edition

ADAPTABLE | ACCESSIBLE | AFFORDABLE

Adapted for

Emory University

Math 221

Linear Algebra

Sections 1 & 2 Lectured and adapted by

Le Chen

April 15, 2021

le.chen@emory.edu
Course page
http://math.emory.edu/~lchen41/teaching/2021_Spring_Math221

by W. Keith Nicholson Creative Commons License (CC BY-NC-SA)

Contents

1	Systems of Linear Equations				
	1.1	Solutions and Elementary Operations	6		
	1.2	Gaussian Elimination	16		
	1.3	Homogeneous Equations	28		
	Sup	plementary Exercises for Chapter 1	37		
2	Ma	trix Algebra	39		
	2.1	Matrix Addition, Scalar Multiplication, and Transposition	40		
	2.2	Matrix-Vector Multiplication	53		
	2.3	Matrix Multiplication	72		
	2.4	Matrix Inverses	91		
	2.5	Elementary Matrices	109		
	2.6	Linear Transformations	119		
	2.7	LU-Factorization	135		
3	Determinants and Diagonalization				
	3.1	The Cofactor Expansion	148		
	3.2	Determinants and Matrix Inverses	163		
	3.3	Diagonalization and Eigenvalues	178		
	Sup	plementary Exercises for Chapter 3	201		
4	Vec	tor Geometry	203		
	4.1	Vectors and Lines	204		
	4.2	Projections and Planes	223		
	4.3	More on the Cross Product	244		
	4.4	Linear Operators on \mathbb{R}^3	251		
	Sup	plementary Exercises for Chapter 4	260		
5	Vector Space \mathbb{R}^n 20				
	5.1	Subspaces and Spanning	264		
	5.2	Independence and Dimension	273		
	5.3	Orthogonality	287		
	5.4	Rank of a Matrix	297		

$4 \equiv \text{CONTENTS}$

	5.5	Similarity and Diagonalization)7
	Supp	plementary Exercises for Chapter 5	20
6	Vec	tor Spaces 32	!1
	6.1	Examples and Basic Properties	22
	6.2	Subspaces and Spanning Sets	33
	6.3	Linear Independence and Dimension	12
	6.4	Finite Dimensional Spaces	54
	Supp	plementary Exercises for Chapter $6 \ldots 36$	34
7	Line	ear Transformations 36	65
	7.1	Examples and Elementary Properties	36
	7.2	Kernel and Image of a Linear Transformation	74
	7.3	Isomorphisms and Composition	35
8	Ort	hogonality 39	9
	8.1	Orthogonal Complements and Projections)()
	8.2	Orthogonal Diagonalization	10
	8.3	Positive Definite Matrices	21
	8.4	QR-Factorization	27
	8.5	Computing Eigenvalues	31
	8.6	The Singular Value Decomposition	36
		8.6.1 Singular Value Decompositions	36
		8.6.2 Fundamental Subspaces	12
		8.6.3 The Polar Decomposition of a Real Square Matrix	15
		8.6.4 The Pseudoinverse of a Matrix	17

6.3 Linear Independence and Dimension

Definition 6.4 Linear Independence and Dependence

As in \mathbb{R}^n , a set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ in a vector space V is called **linearly independent** (or simply **independent**) if it satisfies the following condition:

If $s_1 v_1 + s_2 v_2 + \dots + s_n v_n = 0$, then $s_1 = s_2 = \dots = s_n = 0$.

A set of vectors that is not linearly independent is said to be **linearly dependent** (or simply **dependent**).

The trivial linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ is the one with every coefficient zero:

$$0\mathbf{v}_1+0\mathbf{v}_2+\cdots+0\mathbf{v}_n$$

This is obviously one way of expressing **0** as a linear combination of the vectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$, and they are linearly independent when it is the *only* way.

Example 6.3.1

Show that $\{1+x, 3x+x^2, 2+x-x^2\}$ is independent in \mathbf{P}_2 .

Solution. Suppose a linear combination of these polynomials vanishes.

 $s_1(1+x) + s_2(3x+x^2) + s_3(2+x-x^2) = 0$

Equating the coefficients of 1, x, and x^2 gives a set of linear equations.

$$s_1 + + 2s_3 = 0$$

$$s_1 + 3s_2 + s_3 = 0$$

$$s_2 - s_3 = 0$$

The only solution is $s_1 = s_2 = s_3 = 0$.

Example 6.3.2

Show that $\{\sin x, \cos x\}$ is independent in the vector space $\mathbf{F}[0, 2\pi]$ of functions defined on the interval $[0, 2\pi]$.

Solution. Suppose that a linear combination of these functions vanishes.

$$s_1(\sin x) + s_2(\cos x) = 0$$

This must hold for *all* values of x in $[0, 2\pi]$ (by the definition of equality in $\mathbf{F}[0, 2\pi]$). Taking x = 0 yields $s_2 = 0$ (because $\sin 0 = 0$ and $\cos 0 = 1$). Similarly, $s_1 = 0$ follows from taking $x = \frac{\pi}{2}$ (because $\sin \frac{\pi}{2} = 1$ and $\cos \frac{\pi}{2} = 0$).

Suppose that $\{\mathbf{u}, \mathbf{v}\}$ is an independent set in a vector space V. Show that $\{\mathbf{u}+2\mathbf{v}, \mathbf{u}-3\mathbf{v}\}$ is also independent.

<u>Solution</u>. Suppose a linear combination of $\mathbf{u} + 2\mathbf{v}$ and $\mathbf{u} - 3\mathbf{v}$ vanishes:

$$s(\mathbf{u}+2\mathbf{v})+t(\mathbf{u}-3\mathbf{v})=\mathbf{0}$$

We must deduce that s = t = 0. Collecting terms involving **u** and **v** gives

$$(s+t)\mathbf{u} + (2s-3t)\mathbf{v} = \mathbf{0}$$

Because $\{\mathbf{u}, \mathbf{v}\}$ is independent, this yields linear equations s + t = 0 and 2s - 3t = 0. The only solution is s = t = 0.

Example 6.3.4

Show that any set of polynomials of distinct degrees is independent.

Solution. Let p_1, p_2, \ldots, p_m be polynomials where $\deg(p_i) = d_i$. By relabelling if necessary, we may assume that $d_1 > d_2 > \cdots > d_m$. Suppose that a linear combination vanishes:

$$t_1p_1+t_2p_2+\cdots+t_mp_m=0$$

where each t_i is in \mathbb{R} . As deg $(p_1) = d_1$, let ax^{d_1} be the term in p_1 of highest degree, where $a \neq 0$. Since $d_1 > d_2 > \cdots > d_m$, it follows that $t_1 ax^{d_1}$ is the only term of degree d_1 in the linear combination $t_1p_1 + t_2p_2 + \cdots + t_mp_m = 0$. This means that $t_1ax^{d_1} = 0$, whence $t_1a = 0$, hence $t_1 = 0$ (because $a \neq 0$). But then $t_2p_2 + \cdots + t_mp_m = 0$ so we can repeat the argument to show that $t_2 = 0$. Continuing, we obtain $t_i = 0$ for each i, as desired.

Example 6.3.5

Suppose that A is an $n \times n$ matrix such that $A^k = 0$ but $A^{k-1} \neq 0$. Show that $B = \{I, A, A^2, \ldots, A^{k-1}\}$ is independent in \mathbf{M}_{nn} .

Solution. Suppose $r_0I + r_1A + r_2A^2 + \dots + r_{k-1}A^{k-1} = 0$. Multiply by A^{k-1} :

$$r_0 A^{k-1} + r_1 A^k + r_2 A^{k+1} + \dots + r_{k-1} A^{2k-2} = 0$$

Since $A^k = 0$, all the higher powers are zero, so this becomes $r_0 A^{k-1} = 0$. But $A^{k-1} \neq 0$, so $r_0 = 0$, and we have $r_1 A^1 + r_2 A^2 + \cdots + r_{k-1} A^{k-1} = 0$. Now multiply by A^{k-2} to conclude that $r_1 = 0$. Continuing, we obtain $r_i = 0$ for each *i*, so *B* is independent.

The next example collects several useful properties of independence for reference.

Let V denote a vector space.

- 1. If $\mathbf{v} \neq \mathbf{0}$ in V, then $\{\mathbf{v}\}$ is an independent set.
- 2. No independent set of vectors in V can contain the zero vector.

Solution.

- 1. Let $t\mathbf{v} = \mathbf{0}$, t in \mathbb{R} . If $t \neq 0$, then $\mathbf{v} = 1\mathbf{v} = \frac{1}{t}(t\mathbf{v}) = \frac{1}{t}\mathbf{0} = \mathbf{0}$, contrary to assumption. So t = 0.
- 2. If $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$ is independent and (say) $\mathbf{v}_2 = \mathbf{0}$, then $\mathbf{0}\mathbf{v}_1 + \mathbf{1}\mathbf{v}_2 + \dots + \mathbf{0}\mathbf{v}_k = \mathbf{0}$ is a nontrivial linear combination that vanishes, contrary to the independence of $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$.

A set of vectors is independent if $\mathbf{0}$ is a linear combination in a unique way. The following theorem shows that *every* linear combination of these vectors has uniquely determined coefficients, and so extends Theorem 5.2.1.

Theorem 6.3.1

Let $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ be a linearly independent set of vectors in a vector space V. If a vector **v** has two (ostensibly different) representations

$$\mathbf{v} = s_1 \mathbf{v}_1 + s_2 \mathbf{v}_2 + \dots + s_n \mathbf{v}_n$$
$$\mathbf{v} = t_1 \mathbf{v}_1 + t_2 \mathbf{v}_2 + \dots + t_n \mathbf{v}_n$$

as linear combinations of these vectors, then $s_1 = t_1, s_2 = t_2, \ldots, s_n = t_n$. In other words, every vector in V can be written in a unique way as a linear combination of the \mathbf{v}_i .

Proof. Subtracting the equations given in the theorem gives

 $(s_1-t_1)\mathbf{v}_1+(s_2-t_2)\mathbf{v}_2+\cdots+(s_n-t_n)\mathbf{v}_n=\mathbf{0}$

The independence of $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ gives $s_i - t_i = 0$ for each *i*, as required.

The following theorem extends (and proves) Theorem 5.2.4, and is one of the most useful results in linear algebra.

Theorem 6.3.2: Fundamental Theorem

can be spanned by *n* vectors. If any set of *m* vectors in *V* is linearly independent, then $m \leq n$.

Proof. Let $V = \text{span} \{ \mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n \}$, and suppose that $\{ \mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m \}$ is an independent set in V. Then $\mathbf{u}_1 = a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_n \mathbf{v}_n$ where each a_i is in \mathbb{R} . As $\mathbf{u}_1 \neq \mathbf{0}$ (Example 6.3.6), not all of the

 a_i are zero, say $a_1 \neq 0$ (after relabelling the \mathbf{v}_i). Then $V = \operatorname{span} \{\mathbf{u}_1, \mathbf{v}_2, \mathbf{v}_3, \dots, \mathbf{v}_n\}$ as the reader can verify. Hence, write $\mathbf{u}_2 = b_1\mathbf{u}_1 + c_2\mathbf{v}_2 + c_3\mathbf{v}_3 + \dots + c_n\mathbf{v}_n$. Then some $c_i \neq 0$ because $\{\mathbf{u}_1, \mathbf{u}_2\}$ is independent; so, as before, $V = \operatorname{span} \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{v}_3, \dots, \mathbf{v}_n\}$, again after possible relabelling of the \mathbf{v}_i . If m > n, this procedure continues until all the vectors \mathbf{v}_i are replaced by the vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$. In particular, $V = \operatorname{span} \{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$. But then \mathbf{u}_{n+1} is a linear combination of $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n$ contrary to the independence of the \mathbf{u}_i . Hence, the assumption m > n cannot be valid, so $m \leq n$ and the theorem is proved.

If $V = \text{span} \{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$, and if $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m\}$ is an independent set in V, the above proof shows not only that $m \leq n$ but also that m of the (spanning) vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ can be replaced by the (independent) vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m$ and the resulting set will still span V. In this form the result is called the **Steinitz Exchange Lemma**.

Definition 6.5 Basis of a Vector Space

As in \mathbb{R}^n , a set $\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}$ of vectors in a vector space V is called a **basis** of V if it satisfies the following two conditions:

1. $\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}$ is linearly independent

2. $V = \text{span} \{ \mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n \}$

Thus if a set of vectors $\{\mathbf{e}_1, \mathbf{e}_2, ..., \mathbf{e}_n\}$ is a basis, then *every* vector in V can be written as a linear combination of these vectors in a *unique* way (Theorem 6.3.1). But even more is true: Any two (finite) bases of V contain the same number of vectors.

Theorem 6.3.3: Invariance Theorem

Let $\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}$ and $\{\mathbf{f}_1, \mathbf{f}_2, \ldots, \mathbf{f}_m\}$ be two bases of a vector space V. Then n = m.

Proof. Because $V = \text{span} \{ \mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n \}$ and $\{ \mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_m \}$ is independent, it follows from Theorem 6.3.2 that $m \leq n$. Similarly $n \leq m$, so n = m, as asserted.

Theorem 6.3.3 guarantees that no matter which basis of V is chosen it contains the same number of vectors as any other basis. Hence there is no ambiguity about the following definition.

Definition 6.6 Dimension of a Vector Space

If $\{\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_n\}$ is a basis of the nonzero vector space V, the number n of vectors in the basis is called the **dimension** of V, and we write

 $\dim V = n$

The zero vector space $\{0\}$ is defined to have dimension 0:

 $\dim \{\boldsymbol{0}\} = 0$

In our discussion to this point we have always assumed that a basis is nonempty and hence that the dimension of the space is at least 1. However, the zero space $\{0\}$ has *no* basis (by Example 6.3.6) so our insistence that dim $\{0\} = 0$ amounts to saying that the *empty* set of vectors is a basis of $\{0\}$. Thus the statement that "the dimension of a vector space is the number of vectors in any basis" holds even for the zero space.

We saw in Example 5.2.9 that dim $(\mathbb{R}^n) = n$ and, if \mathbf{e}_j denotes column j of I_n , that $\{\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_n\}$ is a basis (called the standard basis). In Example 6.3.7 below, similar considerations apply to the space \mathbf{M}_{mn} of all $m \times n$ matrices; the verifications are left to the reader.

The space \mathbf{M}_{mn} has dimension mn, and one basis consists of all $m \times n$ matrices with exactly one entry equal to 1 and all other entries equal to 0. We call this the **standard basis** of \mathbf{M}_{mn} .

Example 6.3.8

Show that dim $\mathbf{P}_n = n + 1$ and that $\{1, x, x^2, \dots, x^n\}$ is a basis, called the standard basis of \mathbf{P}_n .

Solution. Each polynomial $p(x) = a_0 + a_1x + \dots + a_nx^n$ in \mathbf{P}_n is clearly a linear combination of 1, x, \dots, x^n , so $\mathbf{P}_n = \operatorname{span} \{1, x, \dots, x^n\}$. However, if a linear combination of these vectors vanishes, $a_0 1 + a_1 x + \dots + a_n x^n = 0$, then $a_0 = a_1 = \dots = a_n = 0$ because x is an indeterminate. So $\{1, x, \dots, x^n\}$ is linearly independent and hence is a basis containing n+1 vectors. Thus, dim $(\mathbf{P}_n) = n+1$.

Example 6.3.9

If $\mathbf{v} \neq \mathbf{0}$ is any nonzero vector in a vector space *V*, show that span $\{\mathbf{v}\} = \mathbb{R}\mathbf{v}$ has dimension 1.

Solution. $\{\mathbf{v}\}$ clearly spans $\mathbb{R}\mathbf{v}$, and it is linearly independent by Example 6.3.6. Hence $\{\mathbf{v}\}$ is a basis of $\mathbb{R}\mathbf{v}$, and so dim $\mathbb{R}\mathbf{v} = 1$.

Example 6.3.10

Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ and consider the subspace

$$U = \{X \text{ in } \mathbf{M}_{22} \mid AX = XA\}$$

of M_{22} . Show that dim U = 2 and find a basis of U.

Solution. It was shown in Example 6.2.3 that U is a subspace for any choice of the matrix A. In the present case, if $X = \begin{bmatrix} x & y \\ z & w \end{bmatrix}$ is in U, the condition AX = XA gives z = 0 and x = y + w. Hence each matrix X in U can be written

$$X = \begin{bmatrix} y+w & y \\ 0 & w \end{bmatrix} = y \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} + w \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

so $U = \operatorname{span} B$ where $B = \left\{ \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$. Moreover, the set B is linearly independent (verify this), so it is a basis of U and dim U = 2.

Show that the set V of all symmetric 2×2 matrices is a vector space, and find the dimension of V.

<u>Solution</u>. A matrix A is symmetric if $A^T = A$. If A and B lie in V, then

$$(A+B)^T = A^T + B^T = A + B$$
 and $(kA)^T = kA^T = kA$

using Theorem 2.1.2. Hence A + B and kA are also symmetric. As the 2×2 zero matrix is also in V, this shows that V is a vector space (being a subspace of M_{22}). Now a matrix A is symmetric when entries directly across the main diagonal are equal, so each 2×2 symmetric matrix has the form

$$\begin{bmatrix} a & c \\ c & b \end{bmatrix} = a \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} + c \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

Hence the set $B = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \right\}$ spans V, and the reader can verify that B is linearly independent. Thus B is a basis of V, so dim V = 3.

It is frequently convenient to alter a basis by multiplying each basis vector by a nonzero scalar. The next example shows that this always produces another basis. The proof is left as Exercise 6.3.22.

Example 6.3.12

Let $B = {\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n}$ be nonzero vectors in a vector space V. Given nonzero scalars $a_1, a_2, ..., a_n$, write $D = {a_1\mathbf{v}_1, a_2\mathbf{v}_2, ..., a_n\mathbf{v}_n}$. If B is independent or spans V, the same is true of D. In particular, if B is a basis of V, so also is D.

Exercises for 6.3

Exercise 6.3.1 Show that each of the following sets of vectors is independent.

a.
$$\{1+x, 1-x, x+x^2\}$$
 in \mathbf{P}_2

b.
$$\{x^2, x+1, 1-x-x^2\}$$
 in \mathbf{P}_2

$$\left\{ \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 1 \end{bmatrix} \right\}$$

in \mathbf{M}_{22}

$$\left\{ \begin{bmatrix} 1 & 1 \\ 1 & 0 \\ & \text{in } \mathbf{M}_{22} \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \right\}$$

b. If $ax^2 + b(x+1) + c(1-x-x^2) = 0$, then a+c = 0, b-c = 0, b+c = 0, so a = b = c = 0.

d. If
$$a \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} + b \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} + c \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} + d \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$
, then $a + c + d = 0$,
 $a + b + d = 0$, $a + b + c = 0$, and $b + c + d = 0$,
so $a = b = c = d = 0$.

Exercise 6.3.2 Which of the following subsets of *V* are independent?

a.
$$V = \mathbf{P}_2$$
; $\{x^2 + 1, x + 1, x\}$
b. $V = \mathbf{P}_2$; $\{x^2 - x + 3, 2x^2 + x + 5, x^2 + 5x + 1\}$
c. $V = \mathbf{M}_{22}$; $\left\{ \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$
d. $V = \mathbf{M}_{22}$;
 $\left\{ \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix}$
e. $V = \mathbf{F}[1, 2]; \left\{ \frac{1}{x}, \frac{1}{x^2}, \frac{1}{x^3} \right\}$
f. $V = \mathbf{F}[0, 1]; \left\{ \frac{1}{x^2 + x - 6}, \frac{1}{x^2 - 5x + 6}, \frac{1}{x^2 - 9} \right\}$

b.
$$3(x^2 - x + 3) - 2(2x^2 + x + 5) + (x^2 + 5x + 1) = 0$$

d. $2\begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
f. $\frac{5}{x^2 + x - 6} + \frac{1}{x^2 - 5x + 6} - \frac{6}{x^2 - 9} = 0$

Exercise 6.3.3 Which of the following are independent in $\mathbf{F}[0, 2\pi]$?

- a. $\{\sin^2 x, \cos^2 x\}$
- b. $\{1, \sin^2 x, \cos^2 x\}$
- c. $\{x, \sin^2 x, \cos^2 x\}$
- b. Dependent: $1 \sin^2 x \cos^2 x = 0$

Exercise 6.3.4 Find all values of *a* such that the following are independent in \mathbb{R}^3 .

a. {(1, -1, 0), (a, 1, 0), (0, 2, 3)}
b. {(2, a, 1), (1, 0, 1), (0, 1, 3)}

b. $x \neq -\frac{1}{3}$

Exercise 6.3.5 Show that the following are bases of the space V indicated.

a. {(1, 1, 0), (1, 0, 1), (0, 1, 1)};
$$V = \mathbb{R}^3$$

b. {(-1, 1, 1), (1, -1, 1), (1, 1, -1)}; $V = \mathbb{R}^3$
c. { $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ };
 $V = \mathbf{M}_{22}$
d. {1+x, x+x², x²+x³, x³}; $V = \mathbf{P}_3$

- b. If r(-1, 1, 1) + s(1, -1, 1) + t(1, 1, -1) =(0, 0, 0), then -r + s + t = 0, r - s + t = 0, and r - s - t = 0, and this implies that r = s =t = 0. This proves independence. To prove that they span \mathbb{R}^3 , observe that (0, 0, 1) = $\frac{1}{2}[(-1, 1, 1) + (1, -1, 1)]$ so (0, 0, 1) lies in span {(-1, 1, 1), (1, -1, 1), (1, 1, -1)}. The proof is similar for (0, 1, 0) and (1, 0, 0).
- d. If $r(1+x) + s(x+x^2) + t(x^2+x^3) + ux^3 = 0$, then r = 0, r+s = 0, s+t = 0, and t+u = 0, so r = s = t = u = 0. This proves independence. To show that they span \mathbf{P}_3 , observe that $x^2 = (x^2+x^3) - x^3$, $x = (x+x^2) - x^2$, and 1 = (1+x) - x, so $\{1, x, x^2, x^3\} \subseteq$ span $\{1 + x, x+x^2, x^2+x^3, x^3\}$.

Exercise 6.3.6 Exhibit a basis and calculate the dimension of each of the following subspaces of \mathbf{P}_2 .

a. $\{a(1+x) + b(x+x^2) \mid a \text{ and } b \text{ in } \mathbb{R}\}$ b. $\{a+b(x+x^2) \mid a \text{ and } b \text{ in } \mathbb{R}\}$ c. $\{p(x) \mid p(1) = 0\}$ d. $\{p(x) \mid p(x) = p(-x)\}$

- b. $\{1, x+x^2\}$; dimension = 2
- d. $\{1, x^2\}$; dimension = 2

Exercise 6.3.7 Exhibit a basis and calculate the dimension of each of the following subspaces of M_{22} .

a.
$$\{A \mid A^{T} = -A\}$$

b.
$$\{A \mid A \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} A$$

c.
$$\{A \mid A \begin{bmatrix} 1 & 0 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \}$$

d.
$$\{A \mid A \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 1 \end{bmatrix} A \}$$

b. $\left\{ \begin{bmatrix} 1 & 1 \\ -1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \right\}$; dimension = 2 d. $\left\{ \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\}$; dimension = 2

Exercise 6.3.8 Let $A = \begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}$ and define $U = \{X \mid X \in \mathbf{M}_{22} \text{ and } AX = X\}.$

- a. Find a basis of U containing A.
- b. Find a basis of U not containing A.
- b. $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \right\}$

Exercise 6.3.9 Show that the set \mathbb{C} of all complex numbers is a vector space with the usual operations, and find its dimension.

Exercise 6.3.10

a. Let V denote the set of all 2×2 matrices with equal column sums. Show that V is a subspace of \mathbf{M}_{22} , and compute dim V.

- b. Repeat part (a) for 3×3 matrices.
- c. Repeat part (a) for $n \times n$ matrices.
- b. dim V = 7

Exercise 6.3.11

- a. Let $V = \{(x^2 + x + 1)p(x) \mid p(x) \text{ in } \mathbf{P}_2\}$. Show that V is a subspace of \mathbf{P}_4 and find dim V. [*Hint*: If f(x)g(x) = 0 in \mathbf{P} , then f(x) = 0 or g(x) = 0.]
- b. Repeat with $V = \{(x^2 x)p(x) \mid p(x) \text{ in } \mathbf{P}_3\}$, a subset of \mathbf{P}_5 .
- c. Generalize.
- b. $\{x^2 x, x(x^2 x), x^2(x^2 x), x^3(x^2 x)\};$ dim V = 4

Exercise 6.3.12 In each case, either prove the assertion or give an example showing that it is false.

- a. Every set of four nonzero polynomials in \mathbf{P}_3 is a basis.
- b. \mathbf{P}_2 has a basis of polynomials f(x) such that f(0) = 0.
- c. \mathbf{P}_2 has a basis of polynomials f(x) such that f(0) = 1.
- d. Every basis of \mathbf{M}_{22} contains a noninvertible matrix.
- e. No independent subset of \mathbf{M}_{22} contains a matrix A with $A^2 = 0$.
- f. If {**u**, **v**, **w**} is independent then, $a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = \mathbf{0}$ for some a, b, c.
- g. {**u**, **v**, **w**} is independent if $a\mathbf{u} + b\mathbf{v} + c\mathbf{w} = \mathbf{0}$ for some a, b, c.
- h. If $\{\mathbf{u}, \mathbf{v}\}$ is independent, so is $\{\mathbf{u}, \mathbf{u} + \mathbf{v}\}$.
- i. If $\{\mathbf{u}, \mathbf{v}\}$ is independent, so is $\{\mathbf{u}, \mathbf{v}, \mathbf{u} + \mathbf{v}\}$.
- j. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is independent, so is $\{\mathbf{u}, \mathbf{v}\}$.

- k. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is independent, so is $\{\mathbf{u}+\mathbf{w}, \mathbf{v}+\mathbf{w}\}$.
- l. If $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is independent, so is $\{\mathbf{u} + \mathbf{v} + \mathbf{w}\}$.
- m. If $\mathbf{u} \neq \mathbf{0}$ and $\mathbf{v} \neq \mathbf{0}$ then $\{\mathbf{u}, \mathbf{v}\}$ is dependent if and only if one is a scalar multiple of the other.
- n. If dim V = n, then no set of more than n vectors can be independent.
- o. If dim V = n, then no set of fewer than n vectors can span V.
- b. No. Any linear combination f of such polynomials has f(0) = 0.
- d. No. $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \right\};$ consists of invertible matrices.
- f. Yes. $0\mathbf{u} + 0\mathbf{v} + 0\mathbf{w} = \mathbf{0}$ for every set $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$.
- h. Yes. $s\mathbf{u} + t(\mathbf{u} + \mathbf{v}) = \mathbf{0}$ gives $(s+t)\mathbf{u} + t\mathbf{v} = \mathbf{0}$, whence s+t=0=t.
- j. Yes. If $r\mathbf{u} + s\mathbf{v} = \mathbf{0}$, then $r\mathbf{u} + s\mathbf{v} + 0\mathbf{w} = \mathbf{0}$, so r = 0 = s.
- l. Yes. $\mathbf{u} + \mathbf{v} + \mathbf{w} \neq \mathbf{0}$ because $\{\mathbf{u}, \mathbf{v}, \mathbf{w}\}$ is independent.
- n. Yes. If I is independent, then $|I| \le n$ by the fundamental theorem because any basis spans V.

Exercise 6.3.13 Let $A \neq 0$ and $B \neq 0$ be $n \times n$ matrices, and assume that A is symmetric and B is skew-symmetric (that is, $B^T = -B$). Show that $\{A, B\}$ is independent.

Exercise 6.3.14 Show that every set of vectors containing a dependent set is again dependent.

Exercise 6.3.15 Show that every nonempty subset of an independent set of vectors is again independent.

If a linear combination of the subset vanishes, it is a linear combination of the vectors in the larger set (coefficients outside the subset are zero) so it is trivial.

Exercise 6.3.16 Let f and g be functions on [a, b], and assume that f(a) = 1 = g(b) and f(b) = 0 = g(a). Show that $\{f, g\}$ is independent in $\mathbf{F}[a, b]$.

Exercise 6.3.17 Let $\{A_1, A_2, ..., A_k\}$ be independent in \mathbf{M}_{mn} , and suppose that U and V are invertible matrices of size $m \times m$ and $n \times n$, respectively. Show that $\{UA_1V, UA_2V, ..., UA_kV\}$ is independent.

Exercise 6.3.18 Show that $\{\mathbf{v}, \mathbf{w}\}$ is independent if and only if neither \mathbf{v} nor \mathbf{w} is a scalar multiple of the other.

Exercise 6.3.19 Assume that $\{\mathbf{u}, \mathbf{v}\}$ is independent in a vector space V. Write $\mathbf{u}' = a\mathbf{u} + b\mathbf{v}$ and $\mathbf{v}' = c\mathbf{u} + d\mathbf{v}$, where a, b, c, and d are numbers. Show that $\{\mathbf{u}', \mathbf{v}'\}$ is independent if and only if the matrix $\begin{bmatrix} a & c \\ b & d \end{bmatrix}$ is invertible. [*Hint*: Theorem 2.4.5.]

Because $\{\mathbf{u}, \mathbf{v}\}$ is linearly independent, $s\mathbf{u}' + t\mathbf{v}' = \mathbf{0}$ is equivalent to $\begin{bmatrix} a & c \\ b & d \end{bmatrix} \begin{bmatrix} s \\ t \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Now apply Theorem 2.4.5.

Exercise 6.3.20 If $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$ is independent and **w** is not in span $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$, show that:

- a. { \mathbf{w} , \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_k } is independent.
- b. $\{\mathbf{v}_1 + \mathbf{w}, \mathbf{v}_2 + \mathbf{w}, \dots, \mathbf{v}_k + \mathbf{w}\}$ is independent.

Exercise 6.3.21 If $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_k\}$ is independent, show that $\{\mathbf{v}_1, \mathbf{v}_1 + \mathbf{v}_2, \ldots, \mathbf{v}_1 + \mathbf{v}_2 + \cdots + \mathbf{v}_k\}$ is also independent.

Exercise 6.3.22 Prove Example 6.3.12.

Exercise 6.3.23 Let $\{\mathbf{u}, \mathbf{v}, \mathbf{w}, \mathbf{z}\}$ be independent. Which of the following are dependent?

- a. $\{\mathbf{u} \mathbf{v}, \mathbf{v} \mathbf{w}, \mathbf{w} \mathbf{u}\}\$
- b. $\{\mathbf{u} + \mathbf{v}, \mathbf{v} + \mathbf{w}, \mathbf{w} + \mathbf{u}\}$
- c. $\{\mathbf{u} \mathbf{v}, \mathbf{v} \mathbf{w}, \mathbf{w} \mathbf{z}, \mathbf{z} \mathbf{u}\}$
- d. { $\mathbf{u} + \mathbf{v}$, $\mathbf{v} + \mathbf{w}$, $\mathbf{w} + \mathbf{z}$, $\mathbf{z} + \mathbf{u}$ }

b. Independent.

d. Dependent. For example, $(\mathbf{u} + \mathbf{v}) - (\mathbf{v} + \mathbf{w}) + (\mathbf{w} + \mathbf{z}) - (\mathbf{z} + \mathbf{u}) = \mathbf{0}.$

Exercise 6.3.24 Let U and W be subspaces of V with bases $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$ and $\{\mathbf{w}_1, \mathbf{w}_2\}$ respectively. If U and W have only the zero vector in common, show that $\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3, \mathbf{w}_1, \mathbf{w}_2\}$ is independent.

Exercise 6.3.25 Let $\{p, q\}$ be independent polynomials. Show that $\{p, q, pq\}$ is independent if and only if deg $p \ge 1$ and deg $q \ge 1$.

Exercise 6.3.26 If z is a complex number, show that $\{z, z^2\}$ is independent if and only if z is not real.

If z is not real and $az+bz^2 = 0$, then $a+bz = 0 (z \neq 0)$. Hence if $b \neq 0$, then $z = -ab^{-1}$ is real. So b = 0, and so a = 0. Conversely, if z is real, say z = a, then $(-a)z+1z^2 = 0$, contrary to the independence of $\{z, z^2\}$.

Exercise 6.3.27 Let $B = \{A_1, A_2, \dots, A_n\} \subseteq \mathbf{M}_{mn}$, and write $B' = \{A_1^T, A_2^T, \dots, A_n^T\} \subseteq \mathbf{M}_{nm}$. Show that:

- a. B is independent if and only if B' is independent.
- b. *B* spans \mathbf{M}_{mn} if and only if B' spans \mathbf{M}_{nm} .

Exercise 6.3.28 If $V = \mathbf{F}[a, b]$ as in Example 6.1.7, show that the set of constant functions is a subspace of dimension 1 (*f* is **constant** if there is a number *c* such that f(x) = c for all *x*).

Exercise 6.3.29

- a. If U is an invertible $n \times n$ matrix and $\{A_1, A_2, \ldots, A_{mn}\}$ is a basis of \mathbf{M}_{mn} , show that $\{A_1U, A_2U, \ldots, A_{mn}U\}$ is also a basis.
- b. Show that part (a) fails if U is not invertible. [*Hint*: Theorem 2.4.5.]
- b. If $U\mathbf{x} = \mathbf{0}$, $\mathbf{x} \neq \mathbf{0}$ in \mathbb{R}^n , then $R\mathbf{x} = \mathbf{0}$ where $R \neq 0$ is row 1 of U. If $B \in \mathbf{M}_{mn}$ has each row equal to R, then $B\mathbf{x} \neq \mathbf{0}$. But if $B = \sum r_i A_i U$, then $B\mathbf{x} = \sum r_i A_i U \mathbf{x} = \mathbf{0}$. So $\{A_i U\}$ cannot span \mathbf{M}_{mn} .

Exercise 6.3.30 Show that $\{(a, b), (a_1, b_1)\}$ is a basis of \mathbb{R}^2 if and only if $\{a+bx, a_1+b_1x\}$ is a basis of \mathbf{P}_1 .

Exercise 6.3.31 Find the dimension of the subspace span $\{1, \sin^2 \theta, \cos 2\theta\}$ of $\mathbf{F}[0, 2\pi]$.

Exercise 6.3.32 Show that $\mathbf{F}[0, 1]$ is not finite dimensional.

Exercise 6.3.33 If U and W are subspaces of V, define their intersection $U \cap W$ as follows: $U \cap W = \{\mathbf{v} \mid \mathbf{v} \text{ is in both } U \text{ and } W\}$

- a. Show that $U \cap W$ is a subspace contained in U and W.
- b. Show that $U \cap W = \{0\}$ if and only if $\{\mathbf{u}, \mathbf{w}\}$ is independent for any nonzero vectors \mathbf{u} in U and \mathbf{w} in W.
- c. If *B* and *D* are bases of *U* and *W*, and if $U \cap W = \{0\}$, show that $B \cup D = \{\mathbf{v} \mid \mathbf{v} \text{ is in } B \text{ or } D\}$ is independent.
- b. If $U \cap W = 0$ and $r\mathbf{u} + s\mathbf{w} = \mathbf{0}$, then $r\mathbf{u} = -s\mathbf{w}$ is in $U \cap W$, so $r\mathbf{u} = \mathbf{0} = s\mathbf{w}$. Hence $r = \mathbf{0} = s$ because $\mathbf{u} \neq \mathbf{0} \neq \mathbf{w}$. Conversely, if $\mathbf{v} \neq \mathbf{0}$ lies in $U \cap W$, then $1\mathbf{v} + (-1)\mathbf{v} = \mathbf{0}$, contrary to hypothesis.

Exercise 6.3.34 If U and W are vector spaces, let $V = \{(\mathbf{u}, \mathbf{w}) \mid \mathbf{u} \text{ in } U \text{ and } \mathbf{w} \text{ in } W\}.$

- a. Show that V is a vector space if $(\mathbf{u}, \mathbf{w}) + (\mathbf{u}_1, \mathbf{w}_1) = (\mathbf{u} + \mathbf{u}_1, \mathbf{w} + \mathbf{w}_1)$ and $a(\mathbf{u}, \mathbf{w}) = (a\mathbf{u}, a\mathbf{w})$.
- b. If dim U = m and dim W = n, show that dim V = m + n.
- c. If V_1, \ldots, V_m are vector spaces, let

$$V = V_1 \times \cdots \times V_m$$

= {($\mathbf{v}_1, \ldots, \mathbf{v}_m$) | $\mathbf{v}_i \in V_i$ for each i }

denote the space of *n*-tuples from the V_i with componentwise operations (see Exercise 6.1.17). If dim $V_i = n_i$ for each *i*, show that dim $V = n_1 + \cdots + n_m$.

Exercise 6.3.35 Let \mathbf{D}_n denote the set of all functions f from the set $\{1, 2, ..., n\}$ to \mathbb{R} .

- a. Show that \mathbf{D}_n is a vector space with pointwise addition and scalar multiplication.
- b. Show that $\{S_1, S_2, \ldots, S_n\}$ is a basis of \mathbf{D}_n where, for each $k = 1, 2, \ldots, n$, the function S_k is defined by $S_k(k) = 1$, whereas $S_k(j) = 0$ if $j \neq k$.

Exercise 6.3.36 A polynomial p(x) is called **even** if p(-x) = p(x) and **odd** if p(-x) = -p(x). Let E_n and O_n denote the sets of even and odd polynomials in \mathbf{P}_n .

- a. Show that E_n is a subspace of \mathbf{P}_n and find dim E_n .
- b. Show that O_n is a subspace of \mathbf{P}_n and find dim O_n .

b. dim $O_n = \frac{n}{2}$ if *n* is even and dim $O_n = \frac{n+1}{2}$ if *n* is odd.

Exercise 6.3.37 Let $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be independent in a vector space V, and let A be an $n \times n$ matrix. Define $\mathbf{u}_1, \ldots, \mathbf{u}_n$ by

$$\left[\begin{array}{c} \mathbf{u}_1\\ \vdots\\ \mathbf{u}_n \end{array}\right] = A \left[\begin{array}{c} \mathbf{v}_1\\ \vdots\\ \mathbf{v}_n \end{array}\right]$$

(See Exercise 6.1.18.) Show that $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ is independent if and only if A is invertible.